Alaska Source Reservoired Oil Review

The Alliance 3/8/2012 Greg Hobbs, P.E. Petroleum Engineer, State of Alaska, Division of Oil and Gas

Outline

- Source Rock Development
- Potential Benefits to the State
- The Alaska Play
- Analogs
- Task Force and Potential Scenario
- Fracturing Points
- Animations of Drilling and Completion Practices

Source Rock (Shale) Oil Development

- Wells are not prolific (50-100 BOPD stabilized)
- This leads to:
 - Dependable timing is a necessity
 - Many wells are required to maintain production
 - 10-20 rigs drilling for a single operator are typical in these plays
 - Year round operation is needed to maintain development and operations

(Matthew Staver, Bloomberg.com, 11/17/11)

NOT:

Oil Shale (typically mined)

Potential Benefit to the State

- October 2011 production data from the North Dakota Industrial Commission website indicates 488,000 BOPD production rate for the state from 6000 wells in its Bakken development with future growth to 1,000,000 BOPD expected.
- In both Texas and North Dakota, benefits to the states have been staggering with the investment of oil and gas development. A December 22, 2011 article by Business Week entitled "Eagle Ford Drilling Rush May Boost Texas Tax Revenues 15-Fold" states that "States collected \$3.7 billion in taxes tied to extracting resources in the third quarter, a 76 percent increase from the same period in 2010, the U.S. Census Bureau reported today. Texas's collections increased 62 percent to \$807.6 million, second behind Alaska's 1.26 billion, the bureau said."

North Dakota Daily Oil Produced and Price

North Dakota Oil and Gas Division (https://www.dmr.nd.gov/oilgas/stats/DailyProdPrice.pdf)

TABLE 2 – DECEMBER TEXAS TOP TEN OIL AND GAS PRODUCING COUNTIES RANKED BY PRELIMINARY PRODUCTION

NAVARRO

The Alaska Shale Oil Play

(State of Alaska, Division of Oil and Gas)

North Slope Petroleum Systems

3 prolific source rock intervals

Modified by Alaska Division of Oil and Gas staff from Ken Bird and David Houseknecht (U.S. Geological Survey), personal communication, 2002

USGS Alaska North Slope Source Rock Assessment

The U.S. Geological Survey estimated potential, technically recoverable oil and gas resources for source rocks of the Alaska North Slope. Estimates (95-percent to 5-percent probability) range from zero to 2 billion barrels of oil and from zero to nearly 80 trillion cubic feet of gas.

Total petroleum systems (TPS) and assessment units (AU)	AU probability	Field type	Total undiscovered resources											
			Oil (MMBO)			Gas (BCFG)			NGL (MMBNGL)					
			F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Mean
Shublik TPS														
Shublik Shale Oil AU	0.95	Oil	0	428	928	463	0	418	981	462	0	10	26	12
Shublik Shale Gas AU	0.95	Gas					0	36,612	72,195	38,405	0	184	442	205
Brookian TPS		-												
Brookian Shale Oil AU	0.90	Oil	0	421	955	449	0	818	1,996	898	0	20	51	22
Brookian Shale Gas AU	0.90	Gas					0	2,124	4,375	2,184	0	21	46	22
Kingak TPS														
Kingak Shale Oil AU	0.40	Oil	0	0	117	28	0	0	238	57	0	0	6	1
Kingak Shale Gas AU		Gas	Not quantitatively assessed											
Total continuous resources			0	849	2,000	940	0	39,972	79,785	42,006	0	235	571	262

(http://pubs.usgs.gov/fs/2012/3013/pdf/fs2012-3013.pdf)

- Texas: Eagle Ford Shale Play in South Texas
- Scales of highlighted area in each map is approximately 400 Miles.

Analog: Eagle Ford Shale

(www.royaltypartners.com 2011)

Analog: Bakken Development

Alaska: Arctic Tundra – Not Conducive to Single Well Pads

Shale Task Force

- Multi-Agency State Task Force
 - Preparing for potential full development scenario
 - Familiarization
 - Logistics
 - Permitting Focus
 - Engaging Federal and Local Agencies
 - Working from speculative scenario

Potential Scenario

- Disclaimer
 - Scenario is completely hypothetical and does not represent any plans of any potential operator.
 Pipelines and Facilities not adequately represented.
 - Exploration is required to prove viability.

Hypothetical Development Concept

12 wells per pad2 10,000' Laterals / Well24 Laterals / Pad1 rig drills 1 pad per year

Hypothetical Development Concept

One Section – One Mile by One Mile

Drill Existing Pad while Road and Next Year's Pad is being built- On a per rig basis

(www.fracfocus.org)

Fracturing: Frac Fluids

Composition for a 16-stage West Virginia Marcellus Shale well

Product Name	Additive	Purpose	Use and Dilution	Actual Volume	Overall %
		Creates fracture network in shale	Approximately 4 million gallons per		
Water	Carrier Fluid	and carry sand to the formation	well	7,416,822 gal	95.9926%
		Enable fractures to remain open			
		and allow gas to escape into the	Approximately 4 million pounds per		
Sand	Sand	wellbore	well	296,255 gal	3.8343%
		Reduces friction between pipe and	Diluted at one gallon per 1,000		
FR	Friction Reducer	fluid	gallons of water	6,318 gal	0.0818%
			Diluted at one-half gallon per 1,000		
Biocide	Antimicrobial Agent	Eliminates bacteria in water sources	gallons of water	1,089 gal	0.0141%
			Diluted at one gallon per 1,000		
Scale Inhibitor	Scale Inhibitor	Prevents scale deposits	gallons of water	1,057 gal	0.0137%
		Dissolves cement and minerals in	250 gallons per stage (non-diluted		
15% HCL	Acid	the perforations (non-diluted)	chemicals)	3,709 gal	0.0480%
			Diluted at five gallons per 1,000		
Gelling Agent	Viscosifier	Adds viscosity to the fluid	gallons of water	1,109 gal	0.0144%
			Diluted at one-half gallons per 1,000	-	
Gel Breaker	Breaker	Reduces viscosity of fluid	gallons of water	98 gal	0.0013%

Source: EQT Energy, 2011 (http://www.eqt.com/docs/pdf/FluidCompositions/Well512456.pdf)

Surface Water Limitations?

Kuparuk Uplands, White Hills, Franklin Bluffs, Foothills

(National Geographic, 2006; http://ngm.nationalgeographic.com/ngm/0605/feature1/map.html)

Halliburton Outreach HF Microsite

HALLIBURTON

Public Access

HALLIBURTON

Fracturing: Job Placement

Where are the fractures and how far do they extend?

Microseismic map of 9-stage hydraulically fractured horizontal well (Bello, 2009)

Fracture Height Determination

Barnett

Kevin Fisher, "Data Confirm Safety of Well Fracturing" *The American Oil & Gas Reporter – July 2010*

Drilling and Well Completion

Completion Videos (10 Minutes)

Courtesy: Halliburton

Additional Information

• Legislative Testimony 11/1/11

http://www.legis.state.ak.us/basis/get_documents.asp? chamber=HRES&session=27&bill=&date1=11/1/2011&ti me2=1001

- USGS Assessment (Report and Fact Sheet) <u>http://energy.usgs.gov/Miscellaneous/Articles/tabid/98/</u> <u>ID/146/Shale-Gas-and-Shale-Oil-Resource-Potential-of-</u> <u>the-Alaska-North-Slope.aspx</u>
- Frac Focus: <u>http://fracfocus.org/</u>
- <u>http://www.Halliburton.com/HydrualicFracturing</u>

Photo by Todd Yates, Corpus Christi Caller-Times

(www.caller.com, Eagle Ford: As oil flows, so do region's jobs and growth with no end near, 2/1/2011)

Questions?